质数和合数教学设计一等奖4篇
质数和合数教学设计一等奖4篇
质数和合数教学设计一等奖篇1
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
2、培养学生自主探索、*思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
教学重点:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:
区分奇数、质数、偶数、合数。
教学设计:
一、出示课题,学习目标
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
二、出示自学指导
认真看课本
探究究竟什么样的数叫质数,什么样的数叫合数
三、学生看书,自学
四、效果检测
1、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。
2、那你们认为1是什么数?
让学生*思考,后展开讨论。
3、动手*作,制质数表。
五、练习巩固:
完成练习四第1、2题。
六、课题小结:
这节课你在激烈的讨论中有什么收获?
板书设计:
质数和合数
只有1和它本身两个因数的数是质数
有三个或以上因数的数是合数
1既不是质数也不是合数
质数和合数教学设计一等奖篇2
教学内容:
质数和合数
教学目标:
使学生理解质数与合数的饿意义,掌握判断质数合数的方法,
教学过程:
一、复习
约数的概念,找约数的方法。
二、引入新课
例1写出下面每一个自然数的全部约数,在根据约数的个数,把这些自然数进行分类。
自然数约数
11
21、2
51、5
91、3、9
111、11
121、2、3、4、6、12
171、17
201、2、4、5、10、20
381、2、19、38
451、3、5、9、15、45
(1)找约数
(2)按照约数的多少进行分类?
(3)讨论:1是什么数?
最小的质数是几?
最小的合数是几?
三、巩固练习
1、练一练
第一题,练习判断一个数是质数还是合数。
分析:怎样去判断一个自然数是质数还是合数
2、试一试
第三题判断下面各题,正确的在括号里打对,不正确的打错。
四、总结归纳
1、使学生弄清奇数与质数,偶数与合数是不同的概念
五、布置作业
反思:对于本节课的知识学生还好理解,但当把自然数的另一个分类混合的时候学生的概念就出现了混乱。所以我们的教学不能光着眼于学生会不会做这些题目,而是应该真正的了解把自然数分成1、质数、合数的理由是什么。并懂的与偶数、奇数的分类是不同的理由,也就是两个不能相等的概念。并渗透一种交叉的概念。
质数和合数教学设计一等奖篇3
教学目标:
1、使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学生自主探索、*思考、合作交流的能力。
4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
教学重点:
质数和合数的意义。
教学难点:
正确判断一个常见数是质数还是合数。
教学时间:
一课时
教学过程:
一、复习旧知,设疑激趣。
师:在刚开始学习倍数和因数时,我们就知道要研究的数是非零的自然数。如果以是不是2的倍数这个标准进行分类,自然数可以分为几类?
师:请手中的数是偶数的同学站起来,坐着的同学就是什么数?
师:自然数除了按奇偶数进行分类外。我们还可以按自然数的因数个数的多少来进行分类,大家想不想试一试?
二、新授
1.学习质数和合数的概念。
(1)先让学生找出手中数的所有因数。
(2)出示例题
师:老师先选出几个数,让有这几个数的同学说出这些数的因数。
提问:如果把这6个数按因数个数的多少分成两类,你打算怎样分类?
讨论:哪种分类方法更能突出每类数在因数方面的共同特点?
3、小结:为了突出每一类数在因数方面的特点,我们就把这六个数分为两类:一类是只有两个因数的,另一类是超过两个因数的。
4、揭示定义:请大家仔细观察只有两个因数的数,这两个因数有什么特点?(一个是1,一个是它本身)。自然数中是不是只有这3个数只有两个因数呢?像这样的数,我们给它起个名字叫做质数,也叫做素数。(板书:质数)
剩下这几个数因数的个数是怎样的?和质数的因数有什么不同?(除了1和它本身外还有别的因数)。除了这3个数,看看你们手中的数还有没有这样超过两个因数的数?像这样的数,我们也给它起个名字叫做合数。(板书:合数)
5、揭示课题:这就是今天这节课要学习的内容。
6、分别请手中的数是质数和合数的同学站起来,问:你们有没有观察到,有一个同学两次都没有站起来,知道她手中拿的是什么数吗?这个1有几个因数?它是质数还是合数?
7、这样看来,非零自然数如果按因数的个数分类,你认为应该分成几类?哪几类?
三、教学“试一试”
1、先让学生自己*完成,然后指名对应数字的同学起来说出*,并说明理由。
2、提问:你们认为怎样判断一个数是不是质数或者合数?
四、练习:
1、做“练一练”题。
2、做练习六的第1题
先让学生自己完成,然后齐读剩下的质数。
3、做练习六的第2题。
五、拓展延伸
1.把迷路的数送回家。(练习六第2题)
2、判断
①所有的质数都是奇数。
②所有的偶数都是合数。
③自然数不是质数就是合数。
④两个奇数相减,差一定是偶数。
⑤两个偶数相加,和一定是合数。
六、课后小结。学习了关于质数和合数,你们还想研究哪些问题?还有哪些不懂的问题?
七、板书设计:
质数和合数
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1不是质数,也不是合数
质数和合数教学设计一等奖篇4
一、谜语激趣,提出问题。
师:这节课老师给大家带来了几条谜语,想猜猜吗?(出示:各打一数学名词:说出银行密码、一笔数目不清的帐)学生对这两条谜语很感兴趣,表现踊跃,揭示谜底:倍数、因数。
师:你由这些内容能想到哪些数学知识?
生A:;我想到倍数和因数的知识:倍数和因数是相互依存的,应该说出谁是谁的倍数,谁是谁的因数,12是6的倍数, 6就是12的因数。
生B:我想到了怎样找一个数的因数:把这个数分成两个数的积就可以找出它的因数。一个数的因数的个数是有限的,最大的因数是它本身,最小的因数是1。
生C:我想到了奇数、偶数的知识:2、4、6、8、10、……是偶数,它们都是2的倍数。3、6、9、……是奇数,它们不是2的倍数。
师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。(出示课题)
师:看到课题,你认为今天我们要解决哪些问题?
生A:什么是质数,什么是合数?
生B:质数、合数与一个数的因数的个数有什么关系?
生C:质数、合数是按什么分类的?它与以前讲了奇数、偶数有什么关系?
二、共同探究,分析问题
师:一个数是质数还是合数,与它所含的因数的个数有关,根据你前面研究数的经验,你准备怎样研究今天的问题?
生:我想写几个数,找出这些数的因数,看看这些数的因数有什么特点。
师:你的办法准不错,大家准备研究哪些数?
生A:我想研究一些小数,小数的因数好找。
生B:老师,我们还要找一些大数,看看这些数是否也有这样的特点。
师:下面我们用这种办法来研究2~20这几个数的因数。
学生分组合作,展开讨论。
生A:我发现2、3、5、7、11这五个数的因数有两个。
生B:我知道这五个数的因数是1和它本身这两个因数。
生C:我发现4、9的.因数有三个,6、8、10的因数有四个,12的因数有六个。
生D:我看出来了!这些数的因数个数不固定,有多有少,但不管有几个因数,都有1和它本身。
师:这些数如果按照因数的个数来分,哪些数可以归为一类?
学生分组合作,展开讨论。
生A:我把这些数分成四类:一类有两个因数;一类有三个因数;一类有四个因数;一类有六个因数。
生B:我不同意。如果按这种分法,那可以把数分成无数类。如果把有相同因数个数的分成一类,那数是无限的,它的因数个数也是无限的,数也自然可以分成无数类了。
师:看来这种按一个数的因数个数来分确实不科学。大家想一想,这些数的因数有什么共同点呢?
生:老师,我知道了!我们可以把这些数分成两类。因为不管它们的因数有多少个,都离不开1和它本身。可以把只有1和它本身两个因数的分为一类;把其余的分成一类。
师:像这样,(指2、3、5、7……)一个数如果只有1和它本身两个因数,这样的数叫质数也叫素数。(出示定义)剩下的这一类数叫合数,你能说一说一个怎样的数叫做合数吗?
学生小组交流,共同归纳。
师:我们再来看几个数,如果你认为是合数,你就站起来;如果你认为是质数,你就坐端正。(教师依次出示:15、21、29、37、1)
生A:我认为1是质数。
生B:我不同意,因为1的因数只有1个,而其它的质数的因数有两个。
生A:质数的因数有1和它本身,1的本身也是1,我认为1还是质数。
生C:我认为1不是质数,因为质数只有1和它本身两个因数。也就是说一个质数要有两个因数;而1的因数只有1个。
师:1比较特殊,它既不是质数也不是合数,而大于1的数不是质数就是合数。
三、活学活用,解决问题
师:全班同学起立。“请学号数是2的倍数的同学坐下,但2不坐下。学号数是3的倍数的同学请坐下,3不坐下;学号数是5的倍数的同学请坐下,5不坐下;学号数是7的倍数的同学请坐下,7不坐下;”
学生根据自己的学号进行游戏。
师:现在站着的同学,你们的学号数是什么数?
生齐:是质数。
师:在1~100这些自然数中,把2、3、5、7的倍数划去,剩下的都是质数。不过这里有两个条件:①这个数必须是100以内的自然数;②2、3、5、7本身不划掉,这种方法叫筛选法。
师:咱们再做一个游戏:这个游戏还与每个同学的学号有关。
学号是偶数的同学请起立,其中是质数的同学请到一边排队。你发现了什么?
生A:我发现2是偶数,也是质数,除了2以外所有的偶数都是合数。
生B:我发现2是最小的合数。
师:坐着的同学都是什么数吗?
生齐:都是奇数。
师:坐着的同学中,学号是质数的同学请排过来,剩下的都是合数吗?你有什么发现?
生A:剩下的学号不都是合数,这里还有不是质数,也不是合数的数1。
生B:我知道了3是最小的质数。
生C:我明白了不是所有的奇数都是质数,也不是所有的偶数都是合数。
生D:我也明白了不是所有的质数都是奇数,不是所有的合数都是偶数。
师:大家根据自己的学号,请说出这个数的特性,能说多少就说多少?(先示范后小组互说)
生A:我是10,我的因数有4个,是一个合数。我是2的倍数,是一个偶数。同时,我还是最小的两位数。
师:大家都喜欢下跳棋吗?我给大家带来了一副跳棋(棋盘如下)。一组四人各执一枚跳棋,分别将跳棋放在左右两边的四个数中的任意一个格中,然后轮流走,可以向任意方向走,每次只能走一格,每人都要走出一组有相同规律的`数,先到者胜。组内四人开始下棋,然后由组长组织组内同学展开汇报,说出自己走出的是一组什么数。学生走出的一组数有:奇数、偶数、质数、合数等。
反思:
一、为学生自主探究创设足够的空间
有效的数学学习过程不是单纯地依赖模仿与记忆,教师应该努力为学生自主学习创设足够的学习空间,引导学生主动从事观察、实验、猜测、推理与交流等数学活动,从而使学生形成自己对数学知识的理解。本节课我通过引导学生认识到质数、合数与一个数的因数个数的关系,明确了探究的方向,为学生主动探索构建了思维空间。通过小组内的合作交流,让学生在发现中领悟了研究数的方法,加深了对质数、合数的理解。
二、为学生积极互动创设足够的空间
通过对教材的悉心揣摩,精心设计,有效重组和完善整合,凸现崭新的教学理念。设计让学生思考“一个数的因数个数应怎样分类才合理”,将质数固有的特性巧妙地隐含于学生所要探究的问题中,学生从自己的实际出发,或拼摆、或画图、或在脑子里想象……用自己的思维方式自由地进行探究,并发现“一个数的因数若要把个数相同的分成一类,那么无法进行分类时,”进一步引导学生寻探这些数的共同特点,学生自己会发现它们的因数只有1和它本身,从而获得质数的本质属性,在与质数的比较中,建立合数的概念。在这种数形结合、多种感官参与以及自主探究的活动中,学生建构起质数与合数的概念,自然理解透彻、印象深刻、记忆牢固,更重要的是学生的比较、抽象、概括等思维能力及探究精神得到较好的锻炼和培养。
三、为学生体验数学创设足够的空间
如何让学生愿意亲近数学、了解数学、喜欢数学,主动地从事数学学习,单纯地采取教师权威的方式迫使学生参与数学学习,显然是不行的,而从学生的实际需要出发,创造出丰富多彩的学习活动是吸引学生主动参与学习的重要教学策略。我在设计教学内容时,有意识地将教材知识与学生喜闻乐见的活动形式相联系,这样可以使枯燥无味的数学问题变成活生生的生活现实,使抽象空洞的数学知识变成生动有趣的数学活动。增强学生对教学内容的亲切感,促进了学生积极的数学情感的发展。在本节课上我利用生动的游戏,不但使学生在兴趣盎然中完成对所学知识的综合运用,而且使学生体验到了数学无处不在。
通过本节课的学习,我感受最深的是,作为教师要使自己真正成为活动前的策划者,活动中的引导者和合作者,疑难处的参与者和研究者,要搭建一架无形的“梯子”,让学生在自主探究的登攀中拾级而上。
推荐访问:合数 质数 教学设计 质数与合数教学设计 质数和合数优秀教案 质数和合数课件 质数与合数评课 质数和合数教材分析 小学质数和合数的概念教学 小学数学质数合数试讲 质数与合数教学反思 质数与合数优质课教案
热门文章:
- 前台收银员年度工作总结11篇(范例推荐)2024-02-01
- 项目质检员个人工作总结4篇2024-02-01
- 2024年度审计年度工作总结参考6篇2024-02-01
- 2024年面试简短自我介绍模板4篇2024-02-01
- 妇女节演讲稿最新3篇(完整)2024-02-01
- 在小学实习报告9篇【完整版】2024-02-01
- 2024年有关护理实习报告模板3篇(全文完整)2024-02-01
- 2024年司机辞职报告10篇(完整)2024-02-01
- 模具专业求职信模板6篇【完整版】2024-02-01
- 关于作业的检讨书12篇(范例推荐)2024-02-01
相关文章:
- 质数和合数教学设计及反思4篇2022-05-29
- 质数和合数教案4篇2022-05-29
- 五年级质数和合数教学设计4篇2022-05-29
- 质数和合数教学设计人教版4篇2022-05-29
- 老北京的春节教学设计3篇2022-05-25
- 小学数学一节课的教学设计6篇2022-05-28
- 小石潭记优秀教学设计一等奖3篇2022-05-29
- 《山行》教学设计(精选11篇)8篇2022-05-29
- 学会宽容教学设计及反思10篇2022-05-29
- 道德与法治教学设计说明13篇2022-05-29
- 道德与法治教学设计一等奖4篇2022-05-29
- 绿艾青优秀教学设计4篇2022-06-10
- 语文教学设计万能模板4篇2022-06-11
- 鸟天堂教学设计2篇【完整版】2022-12-29